Kamaelia:
Concurrency
made simpler

We've been told for a
long time that
concurrency is hard.
That concurrency is
something the average
developer cannot
work with reliably.

\//

-

N

In the meantime we

see hardware going massively parallel. We see 2 cores, 8
cores, 80 core systems becoming reality. We're told that
software developers have to get smarter in order to deal
with this.

However, we live in a concurrent world and many
problems we face day to day are concurrent. When we
order coffee in a cafe, when we all read a different book, or
read the same article. 100s of drivers in cars on the roads
deal with the fact there's something else happening right
now. People create mashups between webservices, and they
work, even though the webservices are all concurrent.

Our computers' hardware are all highly parallel systems
with many thousands of subsystems running concurrently
that just work. Furthermore these systems are more often
than not these days created using high level languages not
dissimilar to a modern programming language. It's all
highly concurrent. It all just works. Why?

The reason is because there are some fundamental rules in
place that make this happen.

Enter Kamaelia

Kamaelia was originated by BBC Research with these
problems and ideas in mind. Kamaelia's core goal is to
make the creation of large scale concurrent systems natural,
simple and easy to maintain. This has a side effect of
making many concurrent systems simpler to write. It also
means that a natural solution is often highly concurrent -
that is suitable to work naturally on massively multi-core
systems.

The reason Kamaelia exists is because the problem domains
Kamaelia is designed to work with - networked multimedia
delivery of BBC content - are naturally concurrent domains,
such as 20 million people all watching the same thing is
concurrent. Furthermore, Kamaelia is designed as a toolset
to explore solutions to these problems, meaning it is also
designed for performance and flexibility.

So, what's the basic approach? Essentially we take the same
approach as unix pipeline, but update it for the modern
object oriented age.

Kamaelia's ethos (with apologies to Doug Mcllroy):
Write components that do one thing and do it well.

Write components to work together.
Write components to handle python objects, because that
is a universal interface.

Simplistic Video Serving

So what is a component? Well, it clearly sits in a pipeline or

two:
A simple application to stream Dirac
encoded video from one machine to another
for playback

Pipeline(

ReadFileAdaptor(filename = 'video.drc',

bitrate = 400000),

SingleServer(),
) .activate()
Pipeline(

TCPClient(host = "127.0.0.1",
port = 1601),

DiracDecoder(),
MessageRateLimit(messages per second = 15,
buffer = 15),
VideoOverlay(),
).run()

They sit there, and run concurrently with other
components, sending out data. This may initially be just flat
data from a file served out of a network connection, but this
can be decoded into individual video frames that may need
rate limiting before display.

However that doesn't really tell you what a component is.

Making Presentation Tools

I could say, well, rather than just pipelines we can have
arbitrary graph shapes, and as a result have Graphlines,
which look like this:

Graphline(
NEXT = Button(caption="Next",
msg="NEXT", position=(72,8)),
PREV = Button(caption="Previous",
msg="PREV",position=(8,8)),
FIRST = Button(caption="First",
msg="FIRST",position=(256,8)),
LAST = Button(caption="Last",
msg="LAST",position=(320,8)),

CHOOSER = Chooser(items = files),

IMAGE = Image(size=(800,600),
position=(8,48)),
linkages = {
("NEXT", "outbox")
("PREV", "outbox")
("FIRST", "outbox")
("LAST", "outbox")
("CHOOSER", "outbox")

("CHOOSER", "inbox"),
("CHOOSER", "inbox"),
("CHOOSER", "inbox"),
("CHOOSER", "inbox"),
("IMAGE", "inbox"),
}

).run()

Here you can clearly see that we have an Image component
that is controlled by something - a Chooser - that knows
about a set of files. You can also see that the Chooser is
controlled by some buttons, for first, last, next, previous. I
could even say that these are pygame components and look
nice, and you can also now clearly see that rather thna
stdin/stdout we have inboxes and outboxes.

Whilst this does show you how to build the basics of a
presentation tool, this still doesn't tell you what a
component looks like inside. What you should be able to
see however is that we create interesting systems from
composing components into systems.

Look inside a component

Let's look inside a component - let's choose something
simple - such as something that reads from the console. If
you wanted to naively loop and read from stdin and echo
to stdout, you might write something like this:
import sys
eol = "\n"
while 1:

line = raw_input(">>> ")

line = line + eol

sys.stdout.write(line)

sys.stdout.flush()

In Kamaelia components we replace stdout with an outbox.
We also put this inside the main method of a class that in
this case (due to raw_input blocking) is a
threadedcomponent:

from Axon.ThreadedComponent import
threadedcomponent
class ConsoleReader(threadedcomponent):
def main(self):
eol = "\n"
while 1:
this blocks so we use a thread
line = raw_input(">>> ")
line = line + eol
self.send(line, "outbox")

However, we might also want to output information as
well. In which case, we would create a normal non-
threaded component for this:

class ConsoleEchoer(component):
def main(self):
while 1:

while self.dataReady("inbox"):
data = self.recv("inbox")
_sys.stdout.write(str(data))
_sys.stdout.flush()

Note the threaded component doesn't

do this 'yield' that's the only

difference from a development

perspective

yield 1

Now this looks pretty similar - we recieve some data on an
inbox, grab it and output it.

We have however also gained a "yield 1" line. This signifies
that the main method is a generator. The vast majority of
components are of this form. What this means in practice is
that this function can be called to gives us something else
we can repeatedly call. When we do, it runs until the yield
and then returns the value 1 as indicated. We can do this
repeatedly.

What this means is that whilst we're writing code that is
naturally concurrent it scales well on a single CPU machine
because we're effectively running single threaded.

As before we can now plug these two together as follows:

Pipeline(ConsoleReader(),
ConsoleEchoer(),
).run()

Why Kamaelia Works

Kamaelia essentially models the real world. The
real/physical world is really good at making concurrency
work, and it's due to things like it being impossible to be in
two places at once.

The metaphor of taking something out of an inbox does a
number of things - by definition you conceptually own it
and can do what you like with it. When you're happy with
your work, you can then send it to an outbox. At that point
in time you've literally released the object.

This naturally leads people away from shared state on
objects and where there is the act of taking from an inbox
means you implicitly have a lock, and when you put
something in an outbox you have implicitly released a lock.

This also means that at any point in time any piece of data
only has a single reader and single writer. The combination
of encouraging safe behaviours, a conceptual model that
encourages creating things by composition, and a
sprinkling of underlying theory mean that if you still
within the rules of no shared data, generally speaking
many Kamaelia systems are relatively simple to create.

P2P Video Streaming

Now that we've seen the basics, we can now introduce 2
more concepts - the Backplane and SimpleServer - in the
context of creating a basic P2P Video streaming system.

The Backplane was created to make it easier to allow a
component publish data to, and to allow components to
subscribe to data streams. Anything thing published to a
named backplane is recieved by all subscribers to that
named backplane. By comparison, SimpleServer is
designed to simplify a particular scenario - where everyone
connecting to a server gets the same protocol.

The core of any P2P Video streaming system consists of a
something that gets the video from somewhere, and sends
it to all connected parties, as far as possible. In this case,
let's assume that we grab the video from a dedicated video
source, and publish it to a local backplane:

from Kamaelia.Util.Backplane import *

from Kamaelia.Chassis.Pipeline import Pipeline

from Kamaelia.Internet.TCPClient import \

TCPClient

Create the backplane

Backplane("VIDEO") .activate()

Pipeline(
TCPClient("192.168.1.1", 2080),
PublishTo("VIDEO"),

) .activate()

The flipside of this is that we need to run a server in the

same program that allows a client who connects to get a

copy of the stream. Now the SimpleServer is designed very

much with this usecase in mind. We provide the
SimpleServer with a reference to a function that is to be
called whenever a new connection starts:

from Kamaelia.Util.Backplane import *

from Kamaelia.Chassis.ConnectedServer import \

SimpleServer
def VideoProtocol():
return SubscribeTo("VIDEO"),

SimpleServer(protocol = VideoProtocol,
port = 1500).run()

Let's take a brief second look at that:
Backplane("VIDEOQ").activate()
Pipeline(

TCPClient("192.168.1.1", 2080),
PublishTo("VIDEO"),
) .activate()
def VideoProtocol():
return SubscribeTo("VIDEO"),
SimpleServer(protocol = VideoProtocol,
port=1500).run()

That's essentially all that is needed for the bare minimum

of a P2P streaming core. Sure you can add on things like

buffering, quality of service, and discovery of other hosts,

but this is a start.

Now that we have this, we now need a video source. Given

the size of video, you're unlikely to be able to serve this
over the internet since your upload capacity may not be

that high. In which case, lets take a video source from DVB-

T. For this we'll have a dedicated server. In the following

the tuning parameters suit my local area - you may need to

change your tuning!

from Kamaelia.Device.DVB.Core import \
DVB Multiplex

from Kamaelia.Chassis.Pipeline import Pipeline

from Kamaelia.File.Writing import \
SimpleFileWriter

Multiplex frequency
freq = 754

Programme Stream IDs
pids = [640,641]

Backplane("VIDSOURCE") .activate()
Pipeline(
DVB Multiplex(freq, pids),
PublishTo("VIDSOURCE"),
) .activate()
def Video(): return SubscribeTo("VIDSOURCE"),
SimpleServer(protocol = Video,
port=1500).run()

We could then cause the Peer 2 Peer core to point at this,
and then the next core can point at that and so on. The
issue we have here is how do we play this back?! Well, in
this case we don't have to reinvent the wheel. We can
making a unix shell out. We can either do this with a
standalone player:

Pipeline(
TCPClient("192.168.1.127",
Pipethrough("mplayer -"),

).run()

1500)

Or we can incorporate this into our peer:

Backplane("VIDEO") .activate()
Pipeline(

TCPClient("192.168.1.1", 1500),
PublishTo("VIDEO"),
) .activate()

Pipeline(

SubscribeTo("VIDEO"),
Pipethrough("mplayer -"),

).run()

def VideoProtocol():

return SubscribeTo("VIDEO")

(
SimpleServer(protocol = VideoProtocol,
)

port=1500).run()

Beyond this, creating a viable service would requiring
transcoding, which we won't cover here. (There are
examples in the Distribution)

What's been done so far?

Systems we've (BBC Research) built include:

Kamaelia Compose: A graphical system composition
tool (included in the distribution)

Video Whiteboard: A proof of concept video
annotation tool

A system for producing podcasts of BBC Radio
Kamaelia Macro: A system for capture and transcoding
all BBC TV content

Kamaelia Whiteboard: A collaborative whiteboarding
tool that sends audio in Speex format over the
network. This supports ad-hoc mesh creation in a peer
to peer fashion since servers are as simple to create as
clients. This also supports recording and playback of
sessions. (included in the distribution)

A reframer for mobile video

A shot change detector for automated frame splitting
We've also prototyped collaborative community radio
A simple handwriting recognition tool

Simple pygame based games

Presentation tools

During Summer 2006, we also had 4 students from
Google's Summer of Code working on the following;:

1 student in England working on BitTorrent
integration. In practice he also implemented a basic
scalable webserver and tools for creating web clients,
along with simple audio and IRC tools. The bit torrent
tools have gone on to see use in the Kamaelia
community.

1 student in Austria working on OpenGL integration.
This resulted in a wide set of components allowing us
to take our existing 2D pygame based components and
place them as textures onto 3D surfaces — eg video
playback on a 3D surface.

2 students - one based in India, one in the US working
on proof of concept tools for trusted communications.
The aim here is for the user of the system to be able to
trust the system for things like communication of
sensitive private details.

Obtaining Kamaelia

The best way to get hold of Kamaelia is via subversion. You
can check out the current working system as follows:

svn co \
https://svn.sourceforge.net/svnroot/kamaelia/t
runk kamaelia-trunk

For the rest of this section, I'll refer to that directory as $RT.
Key highlights:

. $RT/Code/Python/Axon — Root of all Axon
distribution.

. $RT/Code/Python/Kamaelia — Root of Kamaelia dist.

* $RT/Code/Python/Bindings — Root of bindings for
things like Dirac, Vorbis, Linux DVB..

Installing Axon: (as root)
cd $RT/Code/Python/Axon
python setup.py install

Installing Kamaelia (as root)
cd $RT/Code/Python/Kamaelia
python setup.py install

If you want to install, say, the python DVB bindings, then
assuming you have Pyrex already installed, you do this: (as

root)
cd $RT/Code/Python/Bindings/python-dvb3
python setup.py install

If you don't have pyrex installed, it's well worth checking

out and you can get it from here:

* http://www.cosc.canterbury.ac.nz/greg.ewing/pytho
n/Pyrex/

What's Pyrex? Just a really great tool for creating python
bindings with!

Summary

Hopefully this tutorial has been useful in introducing
Kamaelia, and demystified what Kamaelia is. Throughout
the examples we've really focused on composition as a
means to structure programs clearly, but as a side effect
these systems are also naturally concurrent.

One of the best examples of this is a basic P2P collaborative
whiteboarding tool, including audio mixing and
retransmission included in the Kamaelia distribution. It is
entirely structured in a compositional form, and looks
natural for doing so. If you example the number of
components however, there are well over a 100 components
running efficiently. If rather than using generators we used
OS threads or processes, this opens up the door to naturally
taking advantage of massively multi-core systems.

Beyond this we've only scratched the surface of the
components available. There's components for scalable TCP
& UDP based clients and servers, DVB-T capture &
handling, integration with Pymedia, PyGame, OpenGL,
BitTorrent, a webserver with component sessions, tools for
multicast, Vorbis, Dirac, graph visualisation, system

introspection, as well as experimental XML support,
among many other things... In /Sketches you'll find a
nascent video whiteboard, simple handwriting recognition
tools and more.

Kamaelia is as flexible as you need it to be, and has the aim
to enable you in the long term to take advantage of
multicore systems naturally. The ideas it uses however are
carefully designed to be implementable in other languages
such as ruby, C, & C++. (Indeed ShedSkin — the python to
C++ compiler can already today convert very simplistic
Kamaelia systems directly to C++)

Enjoy!

Pictures that can be included in no specific Google Summer of Code 2006: Tools created included
components for working with 3D by integrating OpenGL.

position:

Kamaelia Macro: A Kamaelia system that captures an
transcodes everything broadcast by the BBC as a testbed
potential PVR. The implementation naturally follows the
diagram below:

,581 KamaeliaBackend Blog frontend
TUNER
DEMUXER

Kamaelia Logo:
It'd be nice if this could be included somewhere:

A\

JBPO0SUB.) S81G88gD
JBPOOSUB.I} 9Gq0

Programme
& Meta Store

Kamaelia Compose: A nascent graphical tool for
prototyping Kamaelia systems rapidly.

mepieine

.2

\//
/[|

