Kamaelia: P2P Whiteboarding &
More

Kamaelia is a general purpose open source framework for
building software. Yes, I know, another one. It's different
though. It's designed to feel very similar to lego or k'nex,
and even includes a nascent tool for creating these systems
visually. It originated from BBC Research targeted at
networked delivery of fun and useful content, but is already
useful today.

It includes components for working with Freeview, as well
as tools for dealing with multimedia. This allows you to use
Pygame, OpenGL, networking (custom servers, clients,
protocols including HTTP & Bit Torrent), dirac, vorbis,
speex, and a variety of other tools simply and easily in the
same system.

This tutorial focusses on our "Whiteboard" application that
was written to solve a problem our team faced. Our team is
split across multiple sites, which led to a need for real
collaboration including audio, and sketching that just works
(ie precisely the same problem as many open source
projects). It has a spartan interface, which allows you to
forget about the application and just use it.

Features:

the system called "Axon", installing the library of
components and tools "Kamaelia". The next step is to install
any further dependencies for the functionality you wish to
use. For convenience below I'm going to assume you are
installng as root.

Also, we provide a number of packages regarding
installation, and the largest of these - KamaeliaMegaBundle
- includes all the major dependencies. Inside this bundle
you will find the following required files:

® Axon-1.5.1.tar.gz, Kamaelia-0.5.0.tar.gz
The following recommended files:

® pygame-1.71release.tar.gz
® Pyrex-0.9.3.1.tar.gz

The following additional dependencies for audio for the
whiteboard:

® Speex capture and playback requires speex-
1.0.5.tar.gz, pySpeex-0.2.tar.gz, pymedia-cvs-
patched.tar.gz to be installed. pySpeex requires
Pyrex (above) for installation

Loading and saving of images efficiently requires
the using of the python imaging library, hence why
Imaging-1.1.5.tar.gz is needed.

The other files are useful as follows:

: ;{ou have very]l%}SilC drawing ?n}cltlons' back ® Bit Torrent support integrates with the standard bit
tsupports multiple pages, which you just go bac torrent distribution so BitTorrent-4.20.8.tar.gz
and forth between .
. . . needs to be installed for that.
® Each whiteboard can be a client, server or client .

d If hiteboard ® Open GL support requires access to the python
an. servedr.I }3] ou connect your w 1;3 oar tc}: Open GL bindings, so PyOpenGL-2.0.2.01.tar.gz
ronén?, anl ¢ a;lge p;ges’ you see t ipafe ¢ da.nge. needs to be installed for that.

viously anything drawn on one W tteboard 1s ® Dirac support requires dirac-0.5.4.tar.gz, Dirac-
shown on all the others connected. Given any

. . . 0.0.1.tar.gz to be installed in that order, in addition
whiteboard can be a server and client, this means

hat this is, at its most basic, a peer to peer fo pyrex.
t a' ’ +ap p . ® Vorbis support requires libao-0.8.6.tar.gz, libogg-
whiteboard. Anyone who connects to any server in . .
. . . 1.1.3.tar.gz, libvorbis-1.1.2.tar.gz, pyao-
the network will recieve everything. .. .
. ; . 0.82.tar.gz,vorbissimple-0.0.2.tar.gz to be installed
® It also supports audio using the speex audio codec . . o
o O . in that order, in addition to pyrex.

- which is optimised for people speaking, and to . . .

P low bi Thi ® Freeview - DVB-T - support requires a recent linux
encode to very low bitrates. This means you can kernel and python-dvb3-0.0.4.tar.gz to be installed
chat to anyone connected.

. . (again, in addition to pyrex!)

® Sessions can be recorded and played back. Whilst a
recording is being played back, you can continue to This set of dependencies is pretty large, but its worth
use the whiteboard as you would normally - as can bearing in mind that they are only required to support these
anyone connected to your network of whiteboards. external features. If you don't need Dirac, don't install those
® You can also inject MP3 audio into the whiteboad - dependencies! In a way you can think of Axon as being akin
which is particularly useful for setting the scene for to your linux kernel, Kamaelia as being the base installation,
a brainstorming session. and all the other files as optional extras you may want
® A command line console installed.
® Experimental capability to cause V\fhlteboal"ds to Installing Axon
page through locally stored pages in a semi-
synchronised fashion. Axon is need to provide the basic communications
. framework for components. As a result we need to install
Installation

this first. Unpack, change into the directory, run the
Kamaelia is written in python, and it is currently developed installer:
under SuSE linux, using python 2.4. Any linux distribution
should work, however we are unlikely to have tested your

setup - feedback to the development team is welcome. You
should be able to use Kamaelia with any version of python

since 2.2.2, but python 2.4 is recommended.

® # tar zxf Axon-1.5.1.tar.gz
® #cd Axon-1.5.1
® # python setup.py install

Installing Kamaelia

Installation of Kamaelia comprises of: installing the core of Then we need to install the repository of components.

Unpack, change into the directory, run the installer:

® # tar zxf Kamaelia-0.5.0.tar.gz
® #cd Kamaelia-0.5.0
® # python setup.py install

Installing Pygame

The Whiteboard uses pygame for display and input. You
may already have this installed or available in your
distribution's version of pygame. If you haven't, or it's not a
recent version installing pygame is essentially the same:
unpack, change into the directory, run the installer:

® # tar zxf pygame-1.7.1release.tar.gz

® #cd pygame-1.71release

® # python setup.py install
NB You will be asked a number of questions based
on your local installation, which is why it may be
preferable to use packages from your distribution!

Installing Speex Audio support

The whiteboard uses the speex audio codec for efficient
transmission of audio. First install speex, then pySpeex, and
then pymedia. (Speex for raw encoding, pyspeex to make
the speex components active, and pymedia for input and
output)

® Installing speex is pretty similar - you unpack
speex-1.0.5.tar.gz change into the directory. You
then type ./configure followed by make; make
install

You then need to install speex support for python
by unpacking pySpeex-0.2.tar.gz changing into
there and doing python setup.py install .

Finally to install pymedia, unpack the provided
patched version of pymedia,

Installing the Python Imaging Library

This is the same to install as Axon & Kamaelia, unpack
change into the directory Imaging-1.1.5.tar.gz, and do:
python setup.py install

Installing other dependencies

For this tutorial I've only covered the dependencies needed
for the whiteboard. For more detailed instructions for all the
dependencies either look at the individual packages or look
at http:/ /kamaelia.sourceforge.net/GettingStarted.html .
Freeview /DVB-T support is useful for the PVR related tools
for capturing TV for timeshifting in conjunction with
certain linux compatible USB DVB-T sticks.

If all has been successful, you will now be left with
Kamaelia installed on your system. If you encounter
problems, check to see if your package manager has the
relevent versions.

Using the Whiteboard
Standalone mode

The whiteboard is currently designed to be run out of the
installation directory. However you can move the
whiteboard's directory to anywhere convenient on your
system. You run the application as follows:

® cd Kamaelia-0.5.0-rc1/Tools/Whiteboard /

® . /Whiteboard.py

Assuming all has gone well, you will be greeting by a blank
screen and some colours to choose to draw in, along with an
eraser. The system will already be capturing audio, but
since we have only run the whiteboard in standalone mode,
this won't be going anyway. First, scribble on the first page.
To create new pages, click "new page". To page back and
forth between pages, click "<<" or ">>".

If you write on a page, and then change pages using "<<" or
">>", then the pages are automatically saved when you
change pages. This makes use of the whiteboard, especially
on a tablet laptop or using an external tablet (eg the kind
you can pick up at a supermarket!) extremely intuitive and
familar for taking notes.

Running as a server
To run as a server, you add a port number to serve on.
® . /Whiteboard.py --serveport=1500

As many clients as your hardware can handle can then
connect to that server.

Running as a client

Suppose the whiteboard above is running on a machine
with IP address 192.168.2.5, you would connect a
whiteboard to it as follows:

® . /Whiteboard.py --connectto=192.168.2.5:1500

If you're testing on the local machine (ie localhost - aka
127.0.0.1), it is wise to take a copy of the Whiteboard
directory before running the second copy:

cd Kamaelia-0.5.0/Tools/

cp -R Whiteboard ClientWhiteboard

cd ClientWhiteboard

./Whiteboard.py --connectto=127.0.0.1:1500

(Clearly you could put the copy of the directory anywhere
you like)

The reason for taking a copy is because moving between
pages you've editted saves the changes, and having two
whiteboards overwriting each other would be rather
irritating!

Now that you have two whiteboards, you can see that
anything you draw on one whiteboard is duplicated onto
the other. If anyone locally creates new pages and turns
pages, their pages are theirs - each person gets their own set
of local pages. The reason for not having synchronised
collections of pages is because we found it to be more useful
that way - it means you don't need to worry about making
sure you're starting from the same set of pages before
connecting two whiteboards - you connect and start
collaborating.

Also, you can now talk to your friend who's connected. The
audio quality really depends heavily on your machines'
audio hardware and the microphones you use, so it's worth
investing in an external microphone or a headset. A USB
microphone can be particularly good here. If you do use an
external microphone set it as the default capture source in
your systems' audio mixer!

Running as a Client and Server
This is just a combination of the options:

® ./Whiteboard.py --serveport=1500 --
connectto=192.168.2.5:1500

This sets up the whiteboard to be a true peer in terms of a
peer to peer setup. However there is no concept of mesh or
tree setup. If you wanted to automate connection to a
whiteboard network, that would be an interesting addition.

Where are the pictures?

One obvious question then is, given the pictures are stored
automatically, where are they? They're stored inside the
"Scribbles" subdirectory. They're stored as standard PNG
files. PNG is used due to being lossless, and therefore
working better with the kinds of drawing the Whiteboard is
good for.

On my system, they're here:

cd Kamaelia-0.5.0/Tools/Whiteboard /
#1s Scribbles
slide.1.png slide.2.png slide.3.png

Advanced Whiteboard Foo

If you've followed the previous steps, you should now be
able to use the whiteboard to collaborate with a friend or
colleague - even if its something as whimsical as playing
noughts and crosses, "boxes", or brainstorming your plan to
take over the world. Recording noughts and crosses or
boxes might not be that thrilling. However, capturing not
just the pages from your plan to world domination (through
delivery of mind control devices at christmas perhaps
whilst posing as Santa) but the entire session that led up
that would probably be useful.

OK, more practically let's look at how we record a session;
how we play a session back; how we can load and save
pages to/from arbitrary place on disk; and finally how to
feed an MP3 into the running session (eg for transcription).

Recording a session

First of all, start a server by typing ./Whiteboard.py --
serveport=1500 . Then you can start the recorder up by
asking it to connect to this server. Assume this server is
running on the localhost we type:

® . /WhiteboardRecorder.py whiteboard_session.rec
127.0.0.1 1500

If the whiteboard server is remote - eg running on
192.168.2.5, we would type:

® . /WhiteboardRecorder.py whiteboard_session.rec
192.168.2.5 1500

And so on. To stop recording, simply press control-c.
Playing back a session recording

Again, start a server by typing ./Whiteboard.py --
serveport=1500 . Then, again assuming this is running on
localhost, just start up the tool to play back in much the
same way:

® ./WhiteboardPlayer.py whiteboard_session.rec
127.0.0.1 1500

If it's running on a remote machine:

® . /WhiteboardPlayer.py whiteboard_session.rec
192.168.2.5 1500

The nice thing you'll find here is that you can also talk over
the session, and scribble over the whiteboard as this plays
back. The reason this works is because as far as the system
is concerned, the player is just another person connecting to
the whiteboard. Similarly that's how the recorder gets the
data - it just acts as another client - just storing the data.

Loading & Saving Manually

As well as the page metaphor, the system can also load and
save pages manually. If you flip back to the console you
started the whiteboard from, you'll find a small, quiet
command prompt. Suppose I'm happy with our plan for
how we're loading the sledge and I decide I want to grab a
copy, I could do that by typing either of the following:

>>> SAVE "/home/michaels/plans.png
>>> SAVE "/home/michaels/plans.jpg

Likewise, if I've already saved a picture, I can load one back
by replacing "SAVE" with "LOAD":

>>> LOAD "/home/michaels/plans.png
>>> LOAD "/home/michaels/plans.jpg

Playing back MP3

Playing back MP3s through the session is something that
can be extremely annoying, but depending on the content
can be extremely useful - such as a podcast you want to
make notes on. If you want to do this, you need a
whiteboard server running (again, say 192.168.2.5 port 5).
Then you'd type:

./MP3Player some_podcast.mp3 192.168.2.5 1500

Depending on how fast the person speaking speaks, having
multiple people transcribing this way can be very effective.
As before this is essentially a specialised client, and people
can talk over what's being said.

The Science Bit

Kamaelia works on the principle of taking unix pipelines to
the next logical step. The differences are as follows:

® Instead of just pipelines, you can create arbitrary
shapes we call graphlines.

® You can send any python object though links in the

graphline, rather than being limited to just file-like

data flows

Our components use a python trick to allow the

system to be single threaded. Multiple threads can

be used if desired, but we are not required to use

heavyweight processes unlike unix pipelines.

This naturally encourages small focussed

components and reusability as a result.

To many unix people this approach should be second
nature - small focussed pieces of code loosely joined.

The trick we use in python is called a "generator". This is
effectively a small, simplified co-routine like object, which
can also be thought of as a resumable function. This is best
explained by showing you an example.

>>> def fib():
.ab=11
. while 1:
yield a
ab=>b,a+b

>>> G = fib()

>>>G

<generator object at Oxb7b59bec>

>>> G.next(), G.next(), G.next(), G.next(), G.next()
(1,1,2,3,5)

As you can see here, this function when called returns a
generator object. Python does this because there is a yield
keyword in the body of the function. We can then call the
"next" method of the generator object repeatedy. This
effectively gives it some CPU time, and get it to do some
work.

We then put this inside a class, calling it "main". This allows

created this using a graphline:

Graphline(
CHOOSER = Chooser(items = files),
IMAGE = Image(size=(800,600),

position=(8,48)),

NEXT = Button(caption="Next",
msg="NEXT", position=(72,8)),
PREV = Button(caption="Previous",

msg="PREV",position=(8,8)),
FIRST = Button(caption="First",
msg="FIRST",position=(256,8)),
LAST = Button(caption="Last",
msg="LAST",position=(320,8)),
linkages = {
("NEXT", "outbox")
("PREV", "outbox")
("FIRST", "outbox")
("LAST","outbox") :
("CHOOSER", "outbox")

("CHOOSER", "inbox"),
("CHOOSER", "inbox"),
("CHOOSER", "inbox"),
("CHOOSER", "inbox"),
("IMAGE", "inbox"),
}

).run()

This says create four buttons "NEXT", "PREVIOUS",

us to add on some communications and manage state better, "FIRST", "LAST", which send messages to a chooser. This

add some metadata about the component, and as a result
support things like visual composition of systems using our
graphical builder Compose. A simple component for
echoing content to the display for example could look like
this:

from Axon.Component import component
class ConsoleEchoer(component):
def main(self):
while 1:
while self.dataReady("inbox"):
data = self.recv("inbox")
print data
yield 1

This takes data from an inbox (much like reading from
stdin) and prints it. Conversely, I mentioned we do have
threaded components. Suppose we wanted to write a
component for reading from the console. That would look
like this:

from Axon.ThreadedComponent
import threadedcomponent
class ConsoleReader(threadedcomponent):
def main(self):
while 1:
data = raw_input(">>>")
self.send(data, "outbox")

This is essentially the way the console reader works inside
the whiteboard - a small focussed component for getting
user input. Precisely what it says on the can.

To compose these two into a running system, you create a
pipeline:
from Kamaelia.Chassis.Pipeline
import Pipeline
Pipeline(ConsoleReader(),
ConsoleEchoer(),).run()

Similarly, a button in pygame works in much the same
focussed way - it renders the button, and when clicked
sends out a message.

As final example for now, if we skip how we get the list of
files, and the imports, a simple presentation tool can be

chooses which filename to send out to the image comonent.
The image component then loads and displays the image.

Closing words

The whiteboard is a nice example of a Kamaelia system. it
was faster to write using Kamaelia - the first version in a
matter of days. It has been more extensible as a result. It
built on top of the existing networking tools, allowing work
to solely focus on the application. Adding in audio done by
first testing independently and then merging cleanly. The
natural separation of concerns, that Kamaelia encourages,
simplified this process. Sure there were problems, but those
problems would have existed anyway. This approach made
them more explicit and easier to resolve.

However the key punchline is this: Kamaelia is designed to
make maintenance of concurrent software simple (that's the
real research area!). Old Unix hacks will recognise that the
graphlines, like pipelines are trivially capable of being
made fully concurrent - it's just waiting for the time when
hardware systems are largely multi-core. When they are
Kamaelia systems will be ready to switch to multicore
almost transparently and take full advantage of multicore.
Until then we're finding it a simpler more practical way of
building software.

We're using it to research better ways of delivering BBC
content, and enabling the BBC to work smarter. What would
you do where you can join Open GL to your PVR to an IRC
component to a webserver, all with relative transparency?

Author

Michael Sparks is a Senior Research Engineer at BBC
Research and Project Lead on the open source Kamaelia
project. This article reflects his personal opinions as lead of
the Kamaelia project, but does not represent BBC opinion
on any subject.

