
Kamaelia - Networking
Using Generators

Michael Sparks
BBC Research & Development

ACCU Python 2005, Oxford

(c) 2005 BBC R&D

Kamaelia

• Project to explore long term systems for large
scale media delivery

• Forms a concurrency toolkit, focussed mainly on experimenting
with network protocols.

• 2 key portions:

• Axon - Core Component infrastructure, based on communicating
generators

• Kamaelia - Collection of components that use Axon.

• Aim: Scalable, easy & safe concurrent systems

(c) 2005 BBC R&D

Kamaelia Status

• Released as open source:

• http://kamaelia.sourceforge.net/

• Axon is at version 1.0.3, and considered feature
stable.

• Runs on Linux, Windows (variety), Mac OS X

• Specialised distribution for Nokia Series 60 mobiles

• Kamaelia is at version 0.1.2, and growing

• Ability to write TCP & Multicast clients and servers

• Variety of simple servers, clients and protocols included

(c) 2005 BBC R&D

Kamaelia Status

• Kamaelia 0.1.2:

• Tested on Linux, Windows (variety), Mac OS X

• Subset on Nokia Series 60 mobiles

• Ease of use hypothesis has been tested with 1 pre-
university trainee, looks promising

(c) 2005 BBC R&D

Kamaelia Motivations

• Large Scale Streaming

• Several million streams per day

• Big events have tens of thousands of concurrent viewers

• Want to scale to handling millions of concurrent viewers

• Since this could happen.

(c) 2005 BBC R&D

Kamaelia Motivations

• What If 10 years from now...

• the BBC opened the entire archive?

• Creative Archive is NOT that ambitious! (AFAIK)

• the entire UK got broadband?

• Instantly hit long tail problems

• 20 million homes?

• 20 million different things?

• Not like 20 million people watching BBC1 !

(c) 2005 BBC R&D

Kamaelia Motivations

• Key Problems:

• RTP was originally concieved for A/V conferencing/telephony

• Aspects don’t scale well for large scale unidirectional streaming

• Need a platform for designing, implementing and testing new open
standards to scale in this way.

• Scalability and ability to experiment often conflict.

• Large scale means highly parallel

• Scalable concurrency often has a high barrier to entry

• Limits new ideas, collaboration

(c) 2005 BBC R&D

Axon

• Kamaelia's Core Concurrency System

• Key aims:

• Scalable appoach

• Reusable

• Simple - easy enough for novice programmer to pick up and
produce useful systems.

• Novices see possibilities, not problems

• Safe - it should be possible to write programs without worrying
about race hazards

• Non locking if possible

(c) 2005 BBC R&D

Scaling Concurrency

• "Threads are for people who cant program state
machines." -- Alan Cox (http://tinyurl.com/a66es)

• Processes/Threads/Build your own

• Processes and threads are well known to be not scalable cross
platform.

• Build your own:

• Normally means state machines

• What about people who "cant program state machines" ?

• (Not a dig at Alan !)

(c) 2005 BBC R&D

Scalability : State machines

• Hard to get 100% right - especially for novices

• Debugging someone else’s - twice as hard

• State machine is a piece of sequential processing that
can release control half way and be restarted retaining
state

• Twisted - at it’s heart very state machine based.

• Provides a very good framework for this and provides lots of
high quality assistance

• Still has this barrier to entry (my personal opinion, YMMV)

(c) 2005 BBC R&D

Scalability or ease ?

• Consider:

• A state machine is a piece of sequential processing that can
release control half way and be restarted

• A generator is a piece of sequential processing that can release
control half way and be restarted

• Twisted also recognises this: twisted.flow

• Takes a different approach to composition

• Kamaelia uses generators

• Hypothesised this would be easier for novices

Do we really have to choose?

(c) 2005 BBC R&D

Kamaelia vs Twisted?

• NO!

• Kamaelia could be integrated into twisted (or vice versa) - we just
haven't looked at that yet

• Twisted is stable, mature and usable for production
systems

• Kamaelia isn't mature or suitable for production systems at
present

• Won’t always be that way, but even when it isn’t we’d rather
collaborate rather than compete.

• Lengthy answer in Kamaelia’s blog

(c) 2005 BBC R&D

Concurrency is Easy ?

• Concurrency is hard

• ... so why do we let sys admins do it?

• Think unix pipelines:

• find -type f | egrep -v '/build/|^./MANIFEST' |while read i ;
do cp ../Source/$i $i done

• This has 4 logically concurrent units!

• Do unix sys admins think of themselves concurrent programmers?

• Do you think of it that way?

(c) 2005 BBC R&D

Unix Pipelines

• Concurrent sequential processes - linear

• Items don't know what's next in the pipeline

• Simply communicate with local file handles

• Often forgotten “hidden” details:

• How data passes between processes

• The system environment

(c) 2005 BBC R&D

Axon - Key classes

• Components - self pausing sequential objects that
send data to local interfaces

• Linkages - a facility for joining interfaces, allowing
system composition

• Scheduler - gives components CPU time

• Postman - The facility for tracking linkages, and
handling data transferral

• Co-ordinating Assistant/Tracker (cat) - Provides
environmental facilities akin to a Linda tuple space

(c) 2005 BBC R&D

Axon Components

• Classes with a generator method called "main"

• Augmented by:

• List of Inboxes - defaults: inbox, control

• List of Outboxes - defaults: outbox, signal

• class Echo(component):
 def main(self):
 while 1:
 if self.dataReady("inbox"):
 data = self.recv("inbox")
 self.send(data,"outbox")
 yield 1

(c) 2005 BBC R&D

Axon Scheduler

• Operation

• Holds a run queue containing activated components

• Calls the generator for each component sequentially

• Component Activation

• If the return value is a newComponent object the components
contained are activated (essentially their main() method is called,
and the resulting generator stored)

• Component Deactivation

• If the return value is false, the component is removed from the run
queue

(c) 2005 BBC R&D

Linkages

• Normally join outboxes to inboxes between
components

• out-out and in-in also allowed between parent and nest
components

• Linkages can only be create inside a component

• Inboxes and outboxes designed for connection to subcomponents
are considered private and have the naming convention of a
leading underscore

• Encourages composition and reuse

(c) 2005 BBC R&D

Linkage Example

• class SimpleStreamingClient(component):
 def main(self):
 client=TCPClient("127.0.0.1",1500)
 decoder = VorbisDecode()
 player = AOAudioPlaybackAdaptor()
 self.link((client,"outbox"), (decoder,"inbox")
 self.link((decoder,"outbox"), (player,"inbox"))

 self.addChildren(decoder, player, client)
 yield newComponent(decoder, player, client)
 while 1:
 self.pause()
 yield 1

(c) 2005 BBC R&D

Linkage Example 2
def AdHocFileProtocolHandler(filename):
 class klass(Kamaelia.ReadFileAdaptor.ReadFileAdaptor):
 def __init__(self,*argv,**argd):
 self.__super.__init__(filename, readmode="bitrate", bitrate=400000)
 return klass

class SimpleStreamingServer(component):
 def main(self):
 server = SimpleServer(protocol=AdHocFileProtocolHandler ("foo.ogg"),
 port=clientServerTestPort)
 self.addChildren(server)
 yield _Axon.Ipc.newComponent(*(self.children))
 while 1:
 self.pause()
 yield 1

(c) 2005 BBC R&D

Linkage Example: Re-use
class SimpleMulticastStreamingClient(component):
 def main(self):
 client = Multicast_transceiver("0.0.0.0", 1600, "224.168.2.9", 0)
 adapt = detuple(1)
 decoder = VorbisDecode()
 player = AOAudioPlaybackAdaptor()
 self.link((client,"outbox"), (adapt,"inbox")
 self.link((adapt, "outbox"), (decoder,"inbox")
 self.link((decoder,"outbox"), (player,"inbox"))

 self.addChildren(decoder, adapt, player, client)
 yield newComponent(decoder, adapt, player, client)
 while 1:
 self.pause()
 yield 1

(c) 2005 BBC R&D

Co-ordinating Assistant Tracker

• Tracking Services

• This allows for the concept of services

• A service is a mapping of name to (component, inbox) tuple

• Only ever "need" one 'select' statement in a program for example.
(want is a different matter!)

• The Kamaelia.Internet.Selector component offers a "selector"
service

• Tracking Values

• Provides look up and modification of values for keys

• Use case: to enable stats collection in servers

(c) 2005 BBC R&D

Howto: Example Component

• MIME/RFC2822 type objects are common in
network protocols

• Email, web, usenet, etc..

• Essentially serialised key/value pairs - much like a
dict.

• Create a “MIME Dict” component.

• Accepts dict like objects, but translates them to MIME-like
messages

• Accepts MIME-like messages, and converts them to dicts.

(c) 2005 BBC R&D

MimeDictComponent

• How it was written

• First of all a class that could be a "MIME dict" was written

• Subclasses dict

• Always adds a __BODY__ key

• Replaces __str__ with something that displays the dict as an
RFC2822/MIME style message

• Adds a staticmethod "fromString" as a factory method.

• Written entirely test first without a view
to being used as a component

(c) 2005 BBC R&D

MimeDictComponent 2

• Wanted a component thus:

• control - on which we may receive a shutdown message

• signal - one which we will send shutdown messages

• demarshall - an inbox to which you send strings for turning into
dicts

• marshall - an inbox to which you send objects for turning into
strings

• demarshalled - an outbox which spits out parsed strings as
dicts

• marshalled = an outbox which spits out translated dicts as
strings

(c) 2005 BBC R&D

MimeDictComponent 3

• Turned out to be simpler to write a generic marshalling
component instead, main loop looked like this:

while 1:
 self.pause()
 if self.dataReady("control"):
 data = self.recv("control")
 if isinstance(data, Axon.Ipc.producerFinished)
 self.send(Axon.Ipc.producerFinished(), "signal")
 return
 if self.dataReady("marshall"):
 data = self.recv("marshall")
 self.send(str(data),"marshalled")
 if self.dataReady("demarshall"):
 data = self.recv("demarshall")
 self.send(self.klass.fromString(data),"demarshalled")
 yield 1

(c) 2005 BBC R&D

MimeDictComponent 4

• Subclassing approach:

• class MimeDictMarshaller(MarshallComponent):
 def __init__(self,*argv,**argd):
 self.__super.__init__(MimeDict, *argv,**argd)

• Class decoration approach:

• def MarshallerFactory(klass):
 class newclass(MarshallComponent):
 def __init__(self,*argv,**argd):
 self.__super.__init__(klass, *argv,**argd)
 return newclass

MimeDictMarshaller=MarshallerFactory(MimeDict)

(c) 2005 BBC R&D

Summary: New Components

• Longer tutorial based around a multicast
transceiver on the website.

• Same approach:

• Don't worry about concurrency, write single threaded

• When code works, then convert to components

• Change control methods into inboxes/outboxes

(c) 2005 BBC R&D

Ease of use?

• Tested on Ciaran Eaton, a pre-university trainee

• Happy to let me call him a novice programmer (triple checked)

• Previous experience: A-Level computer studies - small amount of
Visual Basic programming and Access

• 3 Month placement with our group

• Started off learning python & axon (2 weeks)

• Created a “learning system” based around parsing a Shakespeare
play:

• Performs filtering, character identification, demultiplexing etc

• Used pygame for display, stopped short of using pyTTS...

(c) 2005 BBC R&D

Ease of use? 2

• Ciaran’s project:

• Created a simplistic low bandwidth video streamer

• Server has an MPEG video, and takes a frame as JPEG every n
seconds

• This is sent to the client over a framing protocol Ciaran designed
and implemented

• The client then displays the images as they arrive

• On a PC this uses pygame

• On a series 60 mobile this uses the native image display calls

• The idea is this simulates previewing PVR content on a mobile

(c) 2005 BBC R&D

Ease of use? 3

• Project was successful, Ciaran achieved the goals

• Ciaran wrote all the components for every part of
the description.

• Relied on a “SimpleServer” and simple “TCPclient”
components - but these only provide reliable data
transfer over the network.

• He’s noted that it was a fun experience

• I find it interesting it was not frustrating given his background.

(c) 2005 BBC R&D

CSP vs State Machines

• Is this approach inherently worse or better?

• We would suggest neither.

• State machine systems often have intermediate
buffers (even single variables) for handoff between
state machines

• This is akin to outboxes and inboxes. If they are
collapsed into one, as planned, this is equivalent

• If we do collapse outboxes into inboxes when we create linkages,
then the system should be as efficient as frameworks like twisted.

• This is currently hypothetical.

(c) 2005 BBC R&D

Integration with other systems

• Default component provides a default main, which
calls 3 default callbacks.

• Looks like this:

• def main(self):
 result = self.initialiseComponent()
 if not result:
 result = 1
 yield result
 while(result):
 result = self.mainBody()
 if result:
 yield result
 yield self.closeDownComponent()

(c) 2005 BBC R&D

Integration: 2

• Purpose of the 3 callback form is for 2 main
reasons

• For those who find callback forms easier to work with

• To allow these methods to be overridden by classes written in:

• Pyrex

• C

• C++

• ie optimisation of components

(c) 2005 BBC R&D

Futures

• C++ Version.

• Simple “miniaxon” version including C++ based generators
working. see: cvs:/Code/CPP/Scratch/miniaxon.cpp

• Python Axon will be optimised

• Syntactic Sugar will be added

• Automated component distribution over clusters

• Kamaelia Component Repository

• More protocols, experimental servers:

• RTSP/RTP initially. New protocols to follow!

(c) 2005 BBC R&D

Finally: Collaboration

• If you’re interested in working with us, please do

• If you find the code looks vaguely interesting, please use and give
us feedback

• We’re very open to exploring changes to the system and willing to
give people CVS commit access in order to try their ideas.

• Anyone working with twisted is very welcome to come and
criticise and suggest new ideas - integration would be very nice!

• Contacts, project blog:

• michaels@rd.bbc.co.uk, kamaelia-list@lists.sourceforge.net

• http://kamaelia.sourceforge.net/cgi-bin/blog/blog.cgi

